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Logarithmic Corrections for Dilute Uniaxial 
Ferromagnets at the Critical Dimension 
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The leading logarithmic corrections to the critical behavior of a dilute uniaxial 
(Ising) ferrornagnet in the disordered phase are derived using renormalization 
group methods. The values of the exponents in the logarithmic terms differ from 
those given by previous authors. 
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1. I N T R O D U C T I O N  

While an understanding of the role of dilution (or nonmagnetic) impurities 
is important in the study of phase transitions in magnetic materials, its 
theoretical analysis remains extremely difficult. (1) A ferromagnet with 
short-range interactions has a critical dimension of dc= 4 and consequently 
exhibits Gaussian critical behavior with logarithmic corrections when 
d =  4. (2) A determination of these logarithmic corrections by, for example, 
simulation of the model provides a direct test of the renormalization 
group description of critical phenomena. Aharony (3) pointed out that the 
logarithmic corrections are modified in a dilute uniaxial (Ising) system 
(e.g., having a randomly distributed concentration of nonmagnetic 
impurities) and have an unusual form involving powers of the factor 
exp[ -[(6/53) ln(t)l 1/2], where t is the reduced temperature t = ( T -  Tc)/T,  

(see also ref. 4 and 5). These exponential factors are multiplied by powers 
of [ln(t)[. Shalaev (6) made the important observation that the correct 
powers of [ln(t)l are not obtained unless terms corresponding to graphs 
with up to three loops are included in the calculation of the fi functions 
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(only graphs with up to two loops has been included in the previous 
work(3 5)). Consequently, although the crossover from pure to dilute 
behavior is expected to be slow, (1'3'5) the possibility of observing the dilute 
uniaxial behavior is of considerable interest, as it would provide a very 
direct test of our understanding of phase transitions in dilute systems. 

In considering this problem we have derived the asymptotic critical 
behavior of the dilute system from the renormalization group equations for 
a massless ~4 field theory. (As in the work of Shalaev, (6) we consider only 
a short-range interaction model at its upper critical dimension.) Our results 
confirm Shalaev's conclusion that the three-loop graphs must be retained in 
the construction of the /? functions in order to describe correctly the 
asymptotic behavior. However, our results differ from those of Shalaev 
both in the power of ln(p) which appears in the momentum dependence of 
the pair correlation function G(p)  at T =  T c and in the power of the ln(t) 
which appears in the singular part of the specific heat. Our results for the 
pair correlation function at T =  To, G(p),  the inverse susceptibility )~-~(t), 
and the singular part of the specific heat Csing(t) may be summarized as 
follows: 

G(p)  ~ p -  2 [ln(p)[-~2 (1) 

z - l ( t )  ~ texp{2Ol[ l ln( t ) l /2] ' /2} l ln( t ) [  "2+~ (2) 

Csi.g(t) "-" - exp {401 [ [ln(t)l/2] x/2 } [ln(t)] 1/2 + 202 (3) 

~]2 = - -  1/212 ~ - 0.00472 (4) 

01 = - (3/53) 1/2 ~ - 0.238 (5) 

2375 378 
02 - 11--~ + 2--8-~ ~(3) ~ 0.373 (6) 

As the method used differs from that used by Shalaev, (6~ the derivation is 
briefly described below. 

In order to generate the appropriate field theory in the replica repre- 
sentation of a disordered system, the nm model with reduced Hamiltonian 

~ = i k  I ( F  _}._ k 2 )  ~i~iJl_u~et ~ 2 i i ~  ~-A m ~ i i  2 ( 7 )  

i=l •=1  i 1 a = l  i = 1  \ c ~ = l  / 

is considered in the limit (rn= 1, n--*0). (7,8) (As usual, the integration is 
over all momentum arguments of the ~b's and momentum conversation is 
applied to these arguments.) The isotropic coupling constant u of the nm 
model in the present application is negative and related to the mean square 
fluctuations of the random impurity potential. The coupling constant A is 
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positive. The renormalized vertex functions of this model in the massless 
limit (r = 0) satisfy the renormalization group equations 

8 8-~ 8 N 
K + / L ~  + G 0 4  2 

where N and L denote the number of ~b fields 
operators, respectively. In the cases of interest here 

B (2'~ = 0 

B (~ = - rim~2 + O(u, d) 

- - - - - ~ - 0  (L + t ~ ) ]  r(N,L)= B (N,L~ (8) 

and composite q12/2 

(9) 

(10) 

The correlation function, inverse susceptibility, and specific heat Of the 
dilute uniaxial magnetic system are given in terms of the vertex functions 
by 

G l(p) oc F(2'~ t = 0 )  

Z l(0 oc F ( 2 ' ~  t )  

Csing(t) oc - F ( ~  - -  0; t)/n 

(11) 

(12) 

(13) 

(Note that B (~ is treated as a constant to leading order, a s  F (~ is to be 
divided by n before taking the limit n--* 0.) 

As usual, the renormalization group equations may be solved by using 
the method of characteristics; the flow equations are: 

8~sS) = ~c(s); ~c(0) = ~c (14) 

~u(s) /L(u(s), ~(s)); u(o) = u (15) 
8s 

O~(s) 
-fl~(u(s), d(s)); d(0) = d (16) 

#s 

&(s) 
- -  - O ( u ( s ) ,  z ~ ( s ) )  t(s); t(0) = t (17) 
8s 

The (critical dimension) beta functions 

flu(u, d) = u{32u + 24J + 2( -336u  2 - 528uA - 120A 2) 

+ [-23680 + 16896((3 ) ] u 3 + [63264 + 36864((3 ) ] uZd 

+ [-46224 + 13824((3)] ud2+ 12096d 3 } (18) 
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/~(u, A) = A {48u + 36A + 2 ( -  656u 2 - 1104uA - 408A 2) 

+ [-52544 + 43008~(3)] u 3 + [ 140400 + 110592~(3)] u2A 

+ [113184 + 82944~(3)] uA 2 + [31320 + 20736~(3)] A 3 } (19) 

for the (m= 1, n-*0)  case 
general expressions for the 
solutions of the form 

were obtained from the previously derived 
/3 functions of the nm models. (8) Assuming 

+u2 " '  

+A2+S - '  

(20) 

(21) 

for s large, we can obtain u~, u2, A~, and A2 from the flow equations. On 
substituting these solutions into the Wilson functions 

0 = s  ~2+02s (22) 

712 
, = -  ( 2 3 )  

S 

We obtain the values of the coefficients given in Eqs. (4)-(6). The MAPLE 
computer algebra system was used to perform the lengthy algebra required 
to solve the flow equations for u and A and to obtain the coefficients in the 
Wilson functions. At this point, the solutions for u(s) and A(s) are easily 
checked analytically to be consistent with Eqs. (15) and (16). Our /3 
functions were also used to generate the known results in the e expansion 
of 0 and t t for d<4 ,  (9,a~ as an additional check. 

The asymptotic critical behavior of the vertex functions may be 
obtained from the general solution of the renormalization group equations. 
For example, the equation for F (~ has a general solution 

/ ' ( ~  U, A ,  K, t) ---- ~homF (0'2) + --inhornF'(0'2) (24) 

F(o,2)_ A1F(o,2)(0; u(s), A(s), x(s), t(s) ) horn - -  

1 F~~ A2 [" B(s') 2 O(s") ds" ds' + A3 (26) 
Os 0 o 
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The constants A1, A2, and A 3 arise from the lower limit placed on the 
integrals. This limit is necessary, as the solutions of the flow equations 
given above are valid only in the large-s regime. In the large-s regime the 
dominant behavior of F (~ is determined by the second term, i.e., Eq. (26). 
After performing the integral in the exponential the remaining integral can 
be done by parts. To leading order the result is proportional to 

- exp (40 ~ s ~/2) s(1 + 402)/2 (27) 

In order that B ( s )  and F (~ on the right-hand side of Eq. (24) can be 
evaluated in the perturbative regime, s is chosen to be 

s = - l n [ t ( s ) / x z ] / 2  (28) 

Substituting this into Eq. (24), we obtain the result stated in Eq. (3). 
Similar manipulations of the general solution for F (~ give Eqs. (t)  
and (2). 

The discrepencies between our results and those of Shalaev can be 
traced to two sources. In the case of the correlation function at T =  Tc the 
discrepency arises from Shalaev's Lie equation [ref. 6, Eq. (17)], which is 
inconsistent with expressions for q given later. The reason is that Shalaev's 
running variable is associated with the scaling of the square of a momen- 
tum, whereas the Lie equation which is consistent with Shalaev's equation 
(32) uses a variable s associated with the scaling of the momentum linearly. 
As a result, explicit use of Shalaev's equation (17) introduces an erroneous 
factor of two in the exponent q. In the case of the singular part of the 
specific heat, the discrepancy appears to arise from Shalaev's equation (43), 
which contains approximations familiar from parquet graph arguments. 
In this case, the approximations are not sufficiently accurate to obtain all 
subleading logarithmic factors. 

Even if the asymptotic regime of the dilute system can be probed by 
experiment for a given material or Monte Carlo simulation, it seems 
unlikely that the powers of the multiplying factors of Iln(t)[ could be con- 
vincingly resolved in the presence of the exponential factors. It is therefore 
natural to consider combinations of the observable properties in which the 
exponential factors are eliminated. From Eqs. (2) and (3) it can be seen 
that 

t 2 C s i n g Z  2 ~ Iln(t)l 1/2- 2~2 (29) 

is such a combination. (Shalaev's results give the exponent as 1/2 rather 
than l / 2 -2q2 . )  In the pure case the corresponding result is 

t2CsingZ 2~ Jln(t)[ (30) 
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Therefore, as the critical temperature is approached, the effective exponent 
of this logarithmic factor would exhibit crossover from the pure value to 
the dilute value. 

Lastly we note that dipolar uniaxial ferromagnets (and ferroelectrics) 
have a critical dimension of de= 3. (2'11) Therefore, these materials may 
provide an opportunity to study the effects of dilution at the critical dimen- 
sion experimentally (although the precise nature of the logarithmic correc- 
tions might be expected to differ from that discussed above). Indeed, it was 
the possibility of dilution effects in Gd, which previous studies indicated 
has asymptotic critical behavior determined by dipolar interactions, (12-14) 
which motivated this work. Logarithmic corrections in the case of pure 
dipolar systems have been observed experimentally. (ls'16) Recently the 
dilute dipolar magnetic systems LiTbo.3Yo.TF 4 and LiHoo.3Yo.7F 4 were 
studied by neutron scattering techniques. (17) However, the data analysis did 
not give detailed information about the form of the logarithmic corrections. 
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